On the arithmetic dimension of triangle groups
نویسندگان
چکیده
Let ∆ = ∆(a, b, c) be a hyperbolic triangle group, a Fuchsian group obtained from reflections in the sides of a triangle with angles π/a, π/b, π/c drawn on the hyperbolic plane. We define the arithmetic dimension of ∆ to be the number of split real places of the quaternion algebra generated by ∆ over its (totally real) invariant trace field. Takeuchi has determined explicitly all triples (a, b, c) with arithmetic dimension 1, corresponding to the arithmetic triangle groups. We show more generally that the number of triples with fixed arithmetic dimension is finite, and we present an efficient algorithm to completely enumerate the list of triples of bounded arithmetic dimension. Classically, tessellations of the sphere, the Euclidean plane, and the hyperbolic plane by triangles [4, 7] were a source of significant interest. Let a, b, c ∈ Z≥2 ∪ {∞}, and let
منابع مشابه
Arithmeticity of complex hyperbolic triangle groups
Complex hyperbolic triangle groups, originally studied by Mostow in building the first nonarithmetic lattices in PU(2, 1), are a natural generalization of the classical triangle groups. A theorem of Takeuchi states that there are only finitely many Fuchsian triangle groups that determine an arithmetic lattice in PSL2(R), so triangle groups are generically nonarithmetic. We prove similar finiten...
متن کاملSelf-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملThe Dimension of the Hitchin Component for Triangle Groups
Representation varieties of closed surface groups into SL(n,R) have been studied extensively by Hitchin and Labourie, and the dimension of a certain distinguished component of the variety was obtained by Hitchin using Higgs bundles. Here we determine the corresponding dimension for representations of triangle groups into SL(n,R), generalising some earlier work of Choi and Goldman in the case n ...
متن کاملAn Arithmetic Analogue of Fox's Triangle Removal Argument
We give an arithmetic version of the recent proof of the triangle removal lemma by Fox [Fox11], for the group Fn 2 . A triangle in Fn 2 is a triple (x, y, z) such that x + y + z = 0. The triangle removal lemma for Fn 2 states that for every ε > 0 there is a δ > 0, such that if a subset A of Fn 2 requires the removal of at least ε · 2n elements to make it triangle-free, then it must contain at l...
متن کاملWeak Mixing Directions in Non-arithmetic Veech Surfaces
We show that the billiard in a regular polygon is weak mixing in almost every invariant surface, except in the trivial cases which give rise to lattices in the plane (triangle, square and hexagon). More generally, we study the problem of prevalence of weak mixing for the directional flow in an arbitrary non-arithmetic Veech surface, and show that the Hausdorff dimension of the set of non-weak m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 86 شماره
صفحات -
تاریخ انتشار 2017